2015 Practice Paper of the Year Award
Concussion Evaluation and Management in Pediatrics

Robin G. Rivera, MSN, RN, FNP-BC
Susan P. Roberson, MSN, RN, ANP-BC
Margaret Whelan, EdD, RN, FNP-BC
Annie Rohan, PhD, RN, NNP/PNP-BC

Congratulations!

Kathleen Rice Simpson, PhD, RNC, FAAN
Editor-in-Chief, MCN
Abstract
Concussions are among the most complex injuries to assess and manage in sports medicine and primary care. Sports concussion in youth has received much attention in recent years because research shows that improperly managed concussion can lead to long-term cognitive deficits and mental health problems. There are several notable risk factors affecting the incidence and severity of concussion in school-age children and adolescents, including a history of a previous concussion. A more conservative approach for return to activities following concussion has been proposed for children and adolescents. Programs of individualized, stepwise increases in physical activity have largely replaced use of algorithms for assigning a grade and activity expectations to concussions. Although validity and reliability testing is ongoing to support use of concussion assessment instruments in pediatric patients, it is practical and appropriate that clinicians incorporate symptom checklists, sideline and balance assessment tools, and neurocognitive assessment instruments into their practice in accordance with evidence-based guidelines.

Key words: Athletic injuries; Brain; Brain injuries; Concussion; Neurologic examination; Pediatrics.
C oncussions are considered to be among the most complex injuries in sports medicine and primary care to diagnose, assess, and manage. A concussion is a traumatic injury to the brain, generally characterized by rapid onset of a constellation of symptoms or cognitive impairments (Kutcher, Giza, & Alessi, 2010). The 4th International Conference on Concussion in Sport recognizes concussion as a subset of traumatic brain injury (McCrory, 2013).

Concussion is a biomechanically induced alteration in the function of the brain, rather than a structural or anatomic injury. Concussions are often the result of low-velocity injuries with symptoms that are not associated with pathologic structural injury. Loss of consciousness occurs in less than 10% of concussions (Scorza, Raleigh, & O’Connor, 2012). A concussion can be caused by a blow to the head, or a blow to the neck or other body part with a force that transmits to the head, resulting in rapid movement or rotation of the brain (Halstead & Walter, 2010).

Sports concussion in youth has received much attention in recent years because research shows that improperly managed concussion can lead to long-term cognitive deficits and mental health problems, and even contribute to death. The American Academy of Neurology acknowledges that variability in provider experience and training, coupled with an explosion of concussion-related literature, has led to uncertainty and inconsistency in diagnosis and management of these injuries (Giza et al., 2013).

The main purpose of this article is to provide an update on the most current pediatric standards and guidelines in concussion evaluation and management. This information will promote evidence-based practice standards that are consistent with “Return to Play” legislation that has been adopted by most states. Knowledgeable nurses can educate patients, parents, the public, and other providers on risks and prevention strategies for concussion, as well as approaches for detection and promotion of best outcomes following this common brain injury.

Incidence, Prevalence, and Cost to Society

Though it is now improving, the public’s knowledge of concussion has varied widely, resulting in gross underreporting of this common brain injury (McKinlay, Bishop, & McLellan, 2011). It has been estimated that up to 3.8 million sports and recreation-related concussions occur yearly in the United States (Langlois, Rutland-Brown, & Wald, 2006). Approximately 1 in 10 high school sports injuries is a concussion (Halstead, 2010). The difficulty in obtaining a better estimate of this number relates to underreporting, which occurs for several reasons. Without loss of consciousness, medical evaluation may not be sought following a concussion-inducing injury. Other times, care may be sought in a setting that does not use an injury surveillance system. An athlete may be reluctant to report head injury or seek medical attention for fear of being removed from his sport (Halstead, 2010; McCrea, Hammek, Olsen, Leo, & Guskiewicz, 2004).
Finally, accurate concussion estimates may be hampered by the use of incorrect International Classification of Diseases codes (West & Marion, 2014).

The cost of concussion to society is even more elusive, as it is difficult to differentiate between costs for functional and structural brain injuries. In 2010, the Centers for Disease Control and Prevention (CDC) estimated that the cost of traumatic brain injury in the United States was approximately $76.5 billion, including both direct and indirect costs (Faul, Xu, Wald, Coronado, & Dellinger, 2010). Direct costs include expenses incurred for neurologic evaluation, management, and follow up. Persisting symptoms and long-term sequelae impose significant burden to individuals, families, and society, and produce enormous indirect costs related to lost or impaired productivity, school and work absence, and altered interpersonal relationships (Faul et al, 2010).

Consensus Statements and Standardization of Care

Many new or updated clinical practice guidelines and position statements have been recently published by stakeholder organizations to address growing interest in concussion identification and management. These guidelines have been compared and contrasted to identify points of agreement and opportunities for further clarification. A 2013 comparison of guidelines from the American Society for Sports Medicine, the American Academy of Neurology, and the Zurich Consensus Working Group (West & Marion, 2014) revealed important similarities. Among these points of agreement are the following:

- Concussion is a clinical diagnosis to be made by a licensed healthcare professional who is familiar with the signs and symptoms of this injury.
- There is no single test that can be used to determine whether a concussion has occurred.
- Computerized tomography (CT) scans of the head are not routinely recommended and should be reserved for cases where intracranial hemorrhage is suspected.
- Graded symptom and clinical sign checklists can be useful in diagnosing concussion and monitoring for resolution. This is especially true for athletes in whom a preseason checklist is available for comparison with postinjury results.
- A general, stepwise increase in physical activity, followed by increase in sports-related activity, is recommended prior to return to play. Medications, such as analgesics, that mask clinical symptoms, should not be used while advancing activities.

It is important to pediatric providers that there is uniform consensus among major organizations that a child or adolescent should not be allowed to participate in sports while symptomatic from concussion, or on the same day that a concussion has occurred, regardless of duration of symptoms. The key recommendations require that a pediatric patient with suspected concussion not be allowed to return to full play until evaluation and clearance by a licensed healthcare provider. A more conservative approach for return to activities has been proposed for children and adolescents, as compared to adults. Programs of individualized, stepwise increases in physical activity have largely replaced algorithms for assigning a grade and activity expectations to concussions (Gomez & Hergenroeder, 2013).

In 2013, the Guideline Development Subcommittee of the American Academy of Neurology reviewed evidence from 1955 to 2012 to revise its position statement on concussion management in sports (Giza et al., 2013). Although specific interventions to improve outcomes were not identified, the subcommittee’s practice recommendations specific to children and adolescents included the following:

- Individuals supervising student athletes should prohibit a student with a concussive-like injury from returning to practice/play until a licensed healthcare provider has determined that the concussion has resolved and that the student is asymptomatic without medication.
- Concussive injuries in children and adolescents should be managed more conservatively than in adults.
- Licensed healthcare providers can help in developing individualized graded plans to return to physical and cognitive activity, guided by a carefully monitored, clinically based approach to minimize exacerbation of symptoms.

There has been a national response to the impact of concussion on youth. As of 2014, all 50 states and the District of Columbia have enacted some type of legislation to address traumatic brain injury. For the majority of states, there has been enactment of “Return to Play” legislation to prevent concussion and limit injury to students or student athletes (State Laws on Traumatic Brain Injury, 2014). In general, these laws required school districts to develop programs to affect education of parents, coaches and administrators about concussion, removal of students suspected of having a concussion from sports participation, and clearance of students with concussion to return to play by a licensed healthcare professional who is qualified to assess fitness for play.

Currently, although most states have “Return to Play” legislation, not all of these states require healthcare professionals to receive specific training in concussion management, although there is movement in this direction. Many providers still rely upon reputable published resources to guide their practice. For example, the CDC (2014) has developed a Web site of concussion resources for students, athletes, parents, coaches, and healthcare professionals.

Risk Factors for Developing Concussion

History of a previous concussion has been established as one of the most significant risk factors for subsequent concussion (Covassin & Elbin, 2010; West & Marion, 2014). There are several other notable risk factors affecting incidence and severity of concussion in school-age children and adolescents. These risk factors can be broadly understood in terms of sport, age, sex, and special population groups.
Athletes who participate in contact or collision sports are at great risk for concussion. This risk is highest during competition (Boden, Breit, Beachler, Williams, & Mueller, 2013; Scorza et al., 2012). The American Academy of Neurology reports sports commonly associated with concussion include football, soccer, lacrosse, and basketball. Nontraditional sports that also pose risk for concussion include sledging, skateboarding, and motor cross (Giza et al., 2013).

Age
Adolescents from age 10 to 19 are more vulnerable to head injuries compared to younger children. Cognitive recovery from sports-related concussion in this age group also seems to require a longer period than that required of college or professional athletes (Ma et al., 2012).

Sex
Sex difference as a risk factor for concussion is controversial (Grady, 2010; West & Marion, 2014). Males have a higher overall incidence of concussion relative to their higher rates of participation in contact sports. Females, however, have almost a two-fold susceptibility to concussion in any sport where the rules of play are similar among males and females (Covassin, Elbin, Kontos, & Larson, 2010). Females seem to be more prone to concussion following collision with playing surfaces or equipment, whereas males are more prone to concussion after player-to-player collision (Scorza et al., 2012).

Special Population Groups
Students with attention-deficit and/or hyperactivity disorder, depression, or learning disabilities are at greater risk for concussion than those without these conditions (Grady, 2010). Student athletes with an increased body mass index seem to be at increased risk (Giza et al., 2013).

Suspected Concussion
At present there is no single tool or test to rely on for diagnosis of concussion. Concussion is a clinical diagnosis (McCrorry et al., 2013). Because healthcare professionals are infrequently available to perform immediate assessment at the exact time of head injury, clinicians who practice in outpatient settings may be evaluating children and adolescents for concussion shortly after an injury for evaluation, in follow-up several days after primary evaluation in an emergency department, or when the athlete seeks help for persisting symptoms following an injury that was not yet evaluated.

Initial Evaluation:

History and Physical Examination
Initial evaluation after a direct or indirect blow to the head involves ruling out cervical spine injury and serious traumatic brain injury, and addressing other urgent first-aid issues. After ruling out injuries that require immediate intervention, the next step in the assessment of a possible concussion is obtaining a complete history.

This history includes a description of events leading up to the injury, location of any forcible impact to the body, whether there was loss of consciousness, and completion of a symptom checklist (Guskiewicz & Broglio, 2011). Loss of consciousness occurs in less than 10% of concussions (Scorza et al., 2012). The physical examination should include a thorough assessment of mental status, gait, and balance. Accordingly, recommendations for use of the Sport Concussion Assessment Tool 3 (SCAT 3) or another appropriate sideline assessment tool were made at the Zurich Conference (Guskiewicz et al., 2013; McCrorry et al., 2013). Sideline assessment tools generally incorporate these important points, and can be administered by nonmedical trained providers (Table 1).

Assessment Tools
There are dozens of concussion management and assessment tools available today. Generally, these tools are identified as either concussion assessment tools or concussion management tools, and can be further categorized as symptom checklists, sideline assessment tools, balance assessment tools, or computerized neurocognitive examinations (Dziemianowicz et al., 2012). An example of a sideline assessment instrument can be found in Supplemental Digital Content, Figure 1, http://links.lww.com/MCN/A18.
<table>
<thead>
<tr>
<th>Instrument</th>
<th>Category</th>
<th>Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>ImPACT1</td>
<td>Assessment and Management Tool</td>
<td>~20-minute assessment Tests memory, performance, reaction time, and speed of cognitive processing, and other areas of neurocognitive function Online version available</td>
</tr>
<tr>
<td>PCS2</td>
<td>Assessment and Management Tool</td>
<td>Symptom Checklist Originally developed to provide information to athletes, physicians, and athletic trainers Post-Concussion Symptom Scale (PCS) 22-item scale Subjective rating of 0-6 for each item</td>
</tr>
<tr>
<td>SCAT3</td>
<td>Assessment Tool</td>
<td>Sideline Assessment Tool One of the most widely used tools for sideline injury assessment Test battery consisting of initial injury assessment with Glasgow Coma Scale, followed by observation/ documentation of concussive signs, followed by symptom endorsement</td>
</tr>
<tr>
<td>ChildSCAT3</td>
<td>Assessment Tool</td>
<td>Sideline Assessment Tool Standardized tool specific for assessing children aged 5–12 years of age</td>
</tr>
<tr>
<td>ACE5</td>
<td>Assessment Tool</td>
<td>Sideline Assessment Tool Recommended for use by the Centers for Disease Control and Prevention as part of the “Heads Up” campaign to enhance evidence-based concussion management Acute Concussion Evaluation (ACE) 9-minute assessment</td>
</tr>
<tr>
<td>SAC6</td>
<td>Assessment Tool</td>
<td>Sideline Assessment Tool Standardized Assessment of Concussion (SAC) ~5–7-minute assessment Designed to assess acute impairment by non-clinicians Component of SCAT</td>
</tr>
<tr>
<td>BESS7</td>
<td>Assessment Tool</td>
<td>Sideline Assessment Tool The Balance Error Scoring System ~3–5-minute assessment Postural stability assessed using three different stances, completed on both hard and soft surfaces Component of SCAT</td>
</tr>
<tr>
<td>CRI8</td>
<td>Management Tool</td>
<td>Internet-Based Neurocognitive Assessment Tool Widely accepted telemedicine tool HeadMinder Concussion Resolution Index 30-minute assessment Objective measures of reaction time, visual recognition, and speed of information processing</td>
</tr>
</tbody>
</table>
Use of neurocognitive assessment tools in conjunction with symptom checklists has been shown to improve sensitivity, specificity, and both positive and negative predictive value of estimating protracted recovery when compared to using any instrument alone (Lau, Collins, & Lovell, 2011). Despite these recommendations and findings, no tools have been developed specifically for sideline assessment of children, and no currently available instrument has been validated for sideline use through all stages of a child’s recovery (Davis & Purcell, 2014). Moreover, there is insufficient evidence to support appraisals developed using neuropsychological assessment tools in preadolescent groups. Although validity and reliability testing is ongoing to support use of adult instruments in pediatric patients, it is practical and appropriate that clinicians incorporate these instruments into their practice in accordance with local guidelines.

Imaging
Concussions cannot be diagnosed by a CT scan or magnetic resonance imaging (MRI), nor can they be ruled out by a negative CT scan or MRI. Imaging contributes little to the management of concussion other than ruling out serious traumatic brain injuries (e.g., intracranial hemorrhage, subdural or epidural hematomas), contusions, skull fracture, or cervical spine injuries (Scorza et al., 2012). There are guidelines available to clinicians to help guide these types of decisions. For example, a 2010 clinical report on sports-related concussion in children and adolescents from the American Academy of Pediatrics recommends that children who present with loss of consciousness greater than 30 seconds, evidence of skull fracture, or focal neurological or ophthalmologic findings following head injury be considered for imaging (Halstead & Walter, 2010).

Management of the Child with Concussion
Evidence is currently lacking to show that any specific intervention enhances recovery or diminishes long-term sequelae postconcussion (Giza et al., 2013; Grady, Master, & Gioia, 2012). Until more evidence emerges, cognitive and physical rest are cornerstones in concussion management of pediatric patients. Concern about long-term injury to the child’s developing brain merits a more conservative approach than for adults.

Greater than 80% of concussions in children resolve with conservative management in the first 3 weeks postinjury (Collins et al., 2003). To achieve cognitive and physical rest during this period, demands on the child or adolescent must be reduced. Recommendations should be made for increased rest or sleep, time off from school or work, limitation of homework, minimal use of visually stimulating electronic activities, no unnecessary travel, and restriction of exercise and athletics. For older teens, driving should be prohibited pending medical clearance (Moser, Glatts, & Schatz, 2012; Moser & Schatz, 2012; Schneider et al., 2013). Best practice includes a multidisciplinary team that actively involves the student, family, medical providers, and relevant school and sports staff (McAvoy, 2009, 2012).

Specific recommendations to achieve cognitive and physical rest must be individualized and targeted to achieve optimal compliance. For example, if a child or adolescent finds television viewing to be relaxing and it does not exacerbate symptoms, it may be permitted in limited quantity, with modifications to reduce light and noise. There are currently no known interventions to speed recovery postconcussion in pediatric patients. Low levels of physical activity are being examined for benefit of those individuals who are slower to recover (McCrory et al., 2013).

Return to Play
A gradual return-to-play protocol can be implemented once a child or adolescent has recovered from the concussion injury across physical, cognitive, emotional, and sleep domains. The decision to return to play should never be made by one individual, or by using one assessment tool; rather, multiple data points from multiple sources should be considered. During graduated return-to-play activities, the student should not be taking medications that may mask the symptoms of concussion. A sample return-to-play protocol can be found in Figure 2.

Athletes between the ages of 10 and 18 years appear to be more symptomatic after concussion, and may take longer than adults to become asymptomatic (McAvoy, 2009, 2012). Evidence suggests that postconcussion headache persisting 7 days after injury in high school athletes is associated with incomplete recovery from concussion (Collins et al., 2003). If symptoms are increasing at any point, not improving by 2 weeks, or persisting beyond 3 weeks, a multidisciplinary rehabilitation strategy may be warranted, including referral to a specialized concussion management team (Makdissi, Cantu, Johnston, McCrory, & Meeuwisse, 2013).

Second Impact Syndrome
If a child or adolescent returns to full activities and/or sports before full resolution of concussion, the brain may be more susceptible to reinjury from a repeated injury. This rare condition is called “second impact syndrome” and its devastating consequences have been reported almost exclusively in teens (Boden, Tacchetti, Cantu, Knowles, & Mueller, 2007; McCrea, Perrine, Nioi, & Hartl, 2013; Weinstein, Turner, Kuzma, & Feuer, 2013).

Concussion management is individualized and is dependent upon multiple factors including sign/symptom presentation; previous history of concussion; neurocognitive assessment; and parent, coach, and teacher report.
Until more is known about the increased vulnerability to injury following concussion, it is widely accepted that children and adolescents not be permitted to return to full play while still symptomatic.

“Return to Learn”
Problems in the classroom setting have also been reported following concussion and are related to the signs and symptoms associated with this injury (Table 2). Paralleling gradual return-to-play recommendations, gradual return to cognitive exertion may be necessary to reduce symptoms during recovery. Following concussion, students have been found to have cognitive deficits, such as difficulty remembering previously learned material and difficulty learning new material. These students may benefit from individualized accommodations developed by a multidisciplinary team (Halstead et al., 2013).

Several terms should be familiar to the healthcare provider when requesting assistance from the school following concussion in a student (Halstead et al., 2013). These include academic adjustments (nonformalized adjustments to the student environment during a short [up to 3 weeks] recovery period and should not significantly alter curriculum requirements), academic accommodations (more formalized adjustments, in the form of a 504 plan for symptoms lasting beyond 3 weeks; may include schedule adjustments and testing rearrangements), and academic modifications (prolonged and more permanent changes to the curriculum that are usually in the form of an Individualized Education Plan).

Proactive Management: Concussion Counseling
In their 2013 guideline updates, the American Academy of Neurology recommends processes to support participation concussion counseling for student athletes (Giza et al., 2013). It is recommended that healthcare providers educate designated school-based professionals so that they can provide accurate concussion information to parents and athletes, and healthcare providers inform athletes and their families of concussion risk factors.

For pediatric patients, the majority of concussions that bring children to an emergency department do not occur during competitive athletics, but rather are related to falls, bicycle and motor vehicle accidents, and other mechanisms (Meehan & Mannix, 2010). Anticipatory guidance about

FIGURE 2. Return-to-Play Protocol

<table>
<thead>
<tr>
<th>STAGE</th>
<th>ACTIVITY</th>
<th>FUNCTIONAL EXERCISE AT EACH STAGE OF REHABILITATION</th>
<th>OBJECTIVE OF STAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No activity</td>
<td>Symptom-limited physical and cognitive rest.</td>
<td>Recovery</td>
</tr>
<tr>
<td></td>
<td>When 100% symptom free for 24 hours proceed to Stage 2. (Recommend longer symptom-free periods at each stage for younger student/athletes)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Light aerobic exercise</td>
<td>Walking, swimming, or stationary cycling keeping intensity <70% maximum permitted heart rate. No resistance training.</td>
<td>Increase heart rate</td>
</tr>
<tr>
<td></td>
<td>If symptoms reemerge with this level of exertion, then return to the previous stage.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If the student remains symptom free for 24 hours after this level of exertion, then proceed to the next stage.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Sport-specific exercise</td>
<td>Skating drills in ice hockey, running drills in soccer. No head-impact activities.</td>
<td>Add movement</td>
</tr>
<tr>
<td></td>
<td>If symptoms reemerge with this level of exertion, then return to the previous stage.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If the student remains symptom free for 24 hours after this level of exertion, then proceed to the next stage.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Noncontact training drills</td>
<td>Progression to more complex training drills, for example, passing drills in football and ice hockey May start progressive resistance training.</td>
<td>Exercise, coordination, and cognitive load</td>
</tr>
<tr>
<td></td>
<td>If symptoms reemerge with this level of exertion, then return to the previous stage.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If the student remains symptom free for 24 hours after this level of exertion, then proceed to the next stage.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Full-contact practice</td>
<td>Following medical clearance, participate in normal training activities.</td>
<td>Restore confidence and assess functional skills by coaching staff</td>
</tr>
<tr>
<td></td>
<td>If symptoms reemerge with this level of exertion, then return to the previous stage.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If the student remains symptom free for 24 hours after this level of exertion, then proceed to the next stage.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Return to play</td>
<td>Normal game play.</td>
<td>No restrictions</td>
</tr>
</tbody>
</table>

A graduated return-to-play approach has been recommended for children and adolescents following concussion (McAvoy, 2009). This sample instrument for guiding return-to-play progression is available online (www.dissingerreed.com/pdfs/REAP%20Concussion%20Management.pdf) and based upon recommendations by the 2012 Zurich Consensus Statement on Concussion in Sport (McCrory et al., 2013). Figure 1 is provided as Supplemental Digital Content http://links.lww.com/MCN/A18.
considered in cases where residual effects are suspected. For children and adolescents who have a history of multiple concussions, formal neurocognitive testing may help guide decisions for withdrawal from competitive sports (Giza et al., 2013). Sports preparticipation baseline neuropsychological testing has not shown substantial utility in helping to diagnose postinjury concussion (Echemendia et al., 2012), but the American Academy of Neurology emphasizes that such tests are only an adjunct in the evaluation of head concussion is relevant to all children and their parents. This information should be reasonably included as part of well-child counseling. Because prior concussion is a significant risk factor for future injury as well as a risk factor for neurocognitive impairment, ascertaining concussion history can also be made a part of the annual visit. For children and adolescents who report events suggestive of an interim concussion, but who may not have been formally evaluated at the time of injury, neuropsychological testing should be included as part of well-child counseling.

TABLE 2: Concussion Symptoms, Signs, and School Considerations

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Associated Signs</th>
<th>School Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headache; head pressure</td>
<td>Appears dazed, distant, or with behavioral evidence of pain</td>
<td>Need for analgesic medication Addition of quiet rest periods to schedule</td>
</tr>
<tr>
<td>Nausea</td>
<td>Vomiting Weight loss</td>
<td>Dietary adjustments Need for antiemetic medication</td>
</tr>
<tr>
<td>Balance difficulties</td>
<td>Clumsy movement Tripping</td>
<td>Provision of extra time to move from class to class</td>
</tr>
<tr>
<td>Dizziness; lightheadedness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visual problems: blurry vision, double vision, photophobia, phosphenes</td>
<td>Squinting Light avoidance Reduced use of video</td>
<td>Adjustments in use of computers, televisions, handheld devices Reduced room lighting Adjusted desk position in classroom</td>
</tr>
<tr>
<td>Noise sensitivity</td>
<td>Avoids headphones/earphones Avoids crowds Reduced use of audio</td>
<td>Alternatives to lunchroom and noisy classrooms/hallways/activities</td>
</tr>
<tr>
<td>Concentration difficulties</td>
<td>Delayed response to questions Unfocused in classroom Impaired school performance</td>
<td>Adjustment of academic expectations Accommodations for test taking/standardized testing Shorter instruction periods Consideration of supplemental tutoring</td>
</tr>
<tr>
<td>Confusion feeling “foggy”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Memory difficulties</td>
<td>Inability to recall events Difficulty learning new concepts Slower processing Impaired school performance</td>
<td>Adjustment of academic expectations Provision of prepared class notes or use of a peer scribe Work toward comprehension of gradually increasing amounts of material</td>
</tr>
<tr>
<td>Sleep disturbance</td>
<td>Sleeping more/less than usual Daytime/classroom napping School lateness</td>
<td>Adjustment of school schedule to include strategic rest periods “Quiet reading” may not be restful for some students Consideration of supplemental tutoring</td>
</tr>
<tr>
<td>Fatigue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in mood</td>
<td>Irritability Behavior/personality changes Difficulty with friendships</td>
<td>Possible psychologist/social worker referral Peer education to enhance support</td>
</tr>
<tr>
<td>Depression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anxiety</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Concern about long-term injury to the child’s developing brain merits a more conservative approach to concussion than is taken in adults.

Injury, and cannot be used alone to diagnose concussion (Giza et al., 2013).

Clinical Implications
Incidence and impact of concussion are of increasing concern to the healthcare, athletic, and educational communities. Guidelines for assessment and management of children and adolescents who have sustained a concussive injury support the following: concussion severity should be determined by the degree of functional impairment and/or the duration of symptoms rather than by the mechanism of injury; concussion management should be individualized and is dependent upon multiple factors including sign/symptom presentation, previous history of concussion, neurocognitive assessment, and reports from parents, coaches, and teachers; concussion management should be driven by concern for long-term cognitive impairment; and concussive injuries in children and adolescents should be managed more conservatively than in adults.

Systems are needed to improve early detection of this brain injury and tracking of symptoms from time of diagnosis. For children and adolescents, an active plan of cognitive and physical rest pending neuropsychological recovery and symptom resolution is the mainstay of treatment, followed by a graded program of exertion prior to medical clearance for return to full activities. Student athletes should never return to play on the same day as a suspected concussion, regardless of symptoms. Current evidence for concussion management in pediatrics is based mostly upon consensus and usual practice. Rigorous evidence for clinical recommendations for children and adolescents is greatly needed. Web resources for clinicians are listed in Table 3.

Table 3: Web Resources for Clinicians

<table>
<thead>
<tr>
<th>Organization and Web Address</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>www.cdc.gov/concussion</td>
<td></td>
</tr>
<tr>
<td>www.iom.edu/concussions</td>
<td></td>
</tr>
<tr>
<td>Brain Injury Association of New York State</td>
<td>Information, resources, and advocacy information for brain injury survivors, family members, professionals, and educators.</td>
</tr>
<tr>
<td>American Association of Rehabilitation Nurses (ARN)</td>
<td>Access to the clinical practice guidelines series, “Care of the Patient with Mild Traumatic Brain Injury” developed by the American Association of Neuroscience Nurses and the Association of Rehabilitation Nurses</td>
</tr>
</tbody>
</table>

Robin G. Rivera is a Nurse Practitioner, Division of Pediatric-Adolescent Medicine, Cohen Children’s Medical Center of the North Shore-LIJ Health System, New Hyde Park, NY.

Susan P. Roberson is a Nurse Practitioner, Division of Pediatric-Adolescent Medicine, Cohen Children’s Medical
DOI:10.1097/NMC.0000000000001114

References

McCrory, P., Meeuwisse, W. H., Aubry, M., Cantu, B., Dvorak, J., Echemen-
McCrea, M., Kelly, J. P., Randolph, C., Kluge, J., Bartolic, E., Finn, G., &
McCrea, M., Guskiewicz, K. M., Marshall, S. W., Barr, W., Randolph,
Schneider, K. J., Iverson, G. L., Emery, C. A., McCrory, P., Herring,
West, T. A., & Marion, D. W. (2014). Current recommendations for the di-

For 5 additional continuing nursing education activities on
topics related to sports injuries, go to nursingcenter.com/ce.

Instructions for Taking the CETest Online
Concussion Evaluation and Management in Pediatrics

• Read the article. The test for this CE activity can be taken
online at www.nursingcenter.com/ce/MCN. Tests can no
longer be mailed or faxed.
• You will need to create a free login to your personal CE
Planner account before taking online tests. Your planner
will keep track of all your Lippincott Williams & Wilkins
online CE activities for you.
• There is only one correct answer for each question.
A passing score for this test is 13 correct answers.
If you pass, you can print your certificate of earned
contact hours and the answer key. If you fail, you
have the option of taking the test again at no
additional cost.
• For questions, contact Lippincott Williams & Wilkins:
1-800-787-8985.
Registration Deadline: April 30, 2017
Disclosure Statement:
The authors and planners have disclosed that they have no
financial relationships related to this article.

Provider Accreditation:
Lippincott Williams & Wilkins, publisher of MCN, The
American Journal of Maternal/Child Nursing, will award
2.5 contact hours for this continuing nursing education activity.
Lippincott Williams & Wilkins is accredited as a provider of
continuing nursing education by the American Nurses
Credentialing Center’s Commission on Accreditation.
This activity is also provider approved by the California
Board of Registered Nursing. Provider Number CEP
11749 for 2.5 contact hours. Lippincott Williams &
Wilkins is also an approved provider of continuing
nursing education by the District of Columbia and
Florida CE Broker #50-1223. Your certificate is valid
in all states.
Payment:
• The registration fee for this test is $24.95.
For additional continuing nursing education activities
on pediatric topics, go to nursingcenter.com/ce.

Moser, R. S., Glatts, C., & Schatz, P. (2012). Efficacy of immediate and
delayed cognitive and physical rest for treatment of sports-related
peds.2012.04.012
Moser, R. S., & Schatz, P. (2012). A case for mental and physical rest in
youth sports concussion: It’s never too late. Frontiers in Neurology, 3,
171. doi:10.3389/fneur.2012.00171
Schneider, K. J., Iverson, G. L., Emery, C. A., McCrory, P., Herring,
S. A., & Meeuwisse, W. H. (2013). The effects of rest and treat-
ment following sport-related concussion: A systematic review of
doi:10.1136/bjsports-2013-092190
in concussion: Evaluation and management. American Family Phy-
sician, 85(2), 123-132.
aspn
syndrome in football: New imaging and insights into a rare and dev-
331-334. doi:10.3171/2012.11.PEDS12343
West, T. A., & Marion, D. W. (2014). Current recommendations for the di-
agnosis and treatment of concussion in sport: A comparison of three
new guidelines. Journal of Neurotrauma, 31(2), 159-168. doi:10.1089/
neu.2013.3031